Bose-glass state in one-dimensional random antiferromagnets

Hirotaka Manaka,^{1[,*](#page-3-0)} Hiroko Aruga Katori,² Oleksandr Viktorovych Kolomiets,^{3,4} and Tuneaki Goto⁴ 1 *Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan*

2 *RIKEN, Wako, Saitama 351-0198, Japan*

³*Department of Electronic Structures, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic*

⁴*Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan* (Received 21 November 2008; revised manuscript received 27 January 2009; published 4 March 2009)

One-dimensional random antiferromagnets 2CHNH3CuCl*x*Br1−*x*-[abbreviated IPA-Cu(Cl_xBr_{1-x})₃] show three magnetic phases: Cl rich, intermediate, and Br rich. In this study, to confirm the presence of a gapped or gapless state in addition to a Bose-glass (BG) state of spin triplets at two magnetic phase boundaries, magnetic susceptibility, specific heat, and magnetization were measured. Contrary to our proposed model, the results suggest a gapless state and a BG state at the Br-rich phase boundary, and a spin-gap state at the Cl-rich phase boundary. From the viewpoints of the universality class, the BG state may be interpreted as a result of Anderson localization. Therefore, IPA-Cu(Cl_xBr_{1-*x*})₃ are intriguing compounds for studying the BG state because of good one dimensionality.

DOI: [10.1103/PhysRevB.79.092401](http://dx.doi.org/10.1103/PhysRevB.79.092401)

: 75.50.Lk, 75.45. $+j$, 75.30.Kz, 75.40. $-s$

In one-dimensional antiferromagnets (1dAFM) with a spin gap, the ground state is a spin singlet and the firstexcited state is a spin triplet separated by a finite spin gap (Δ) from the ground state. The origin of the spin gap in the case of half-integer-spin is clearly different from that in the integer-spin case. In the former case, since uniform 1dAFM have gapless ground states, they necessarily exhibit bond alternation $(-J_1-J_2-J_1-J_2)$, i.e., each set of strongly AFM coupled spins is formed as a singlet dimer state. In the latter case, uniform 1dAFM shows Haldane gap state.¹ In spin-gap systems, the original spin language succeeded in transforming the boson picture, which offers an intuitive understanding for complex quantum properties of matter.² For example, the Bose-Einstein condensation (BEC) of spin triplets occurs above a first critical magnetic field (B_{c1}) that corresponds to Δ .^{[3](#page-3-3)} As the review of the BEC in Ref. 3 suggests, in spin-gap systems, the boson density can be controlled by magnetic fields (B) . The BEC states in TlCuCl₃,^{[4](#page-3-4)} TlCuCl₃ and $BaCuSi₂O₆$ (Ref. [5](#page-3-5)) were studied in detail experimentally. A similar phenomenon occurs in ultracold atomic gases in optical lattices.⁶

Our previous paper⁷ showed that the symmetry of Haldane state breaks down because of a different reason, sufficient randomness. Magnetization $[M(B)]$ measurements at *T*=0.5 K show that the transition from the BEC to the Bose-glass (BG) state of spin triplets occurred at a third critical magnetic field $B_{c3} \approx 40$ T. In disordered Bose systems such as ⁴He in a random potential, both the BEC and superfluidity are suppressed and may disappear. In disordered Bose systems, Fisher *et al.*[8](#page-3-8) theoretically show new three states: superfluid, Mott insulating, and BG. Phase transitions induced by randomness are very common in condensedmatter physics. In strongly correlated electron systems, randomness leads to a competition between Mott transition and Anderson localization.⁹ Boson localization due to randomness plays a key role in the vortex dynamics of cuprate superconductors.¹⁰ ⁴He in nanoporous glass exhibits localized BEC, which does not correspond to a global coherent $BEC¹¹$ From the viewpoints of the universality class, a BG state of spin triplets in spin-gap systems may be interpreted as a result of Anderson localization because Δ is expected to disappear despite boson localization due to randomness. In experiments, a BG state was reported in a mixtures of two spin-gap compounds, $TI_{1-x}K_xCuCl_3$.^{[12](#page-3-12)[,13](#page-3-13)} Both the spin-gap compounds are three-dimensional singlet dimer systems. From the viewpoints of Anderson localization, boson localization tends to occur in 1dAFM rather than threedimensional AFM. Now, we investigate the BG state in 1dAFM with a mixture of the Haldane and singlet dimer states.

The isomorphous compounds $(CH_3)_2CHNH_3CuCl_3$ and $(CH_3)_2CHNH_3CuBr_3$ (abbreviated as IPA-CuCl₃ and IPA-CuBr₃) are spin-gap systems with $\Delta/k_B \approx 14$ K (Refs. [14](#page-3-14) and [15](#page-3-15)) and 98 K, 16 respectively. Inelastic neutronscattering measurements show that $IPA-CuCl₃$ consists of a two-leg ladder system along the *a* axis, with strong ferromagnetic (FM) rungs and weak AFM legs.¹⁵ The resulting pseudo *S*=1 1dAFM is formed along the *a* axis because of good one dimensionality. Magnetic susceptibility $[\chi(T)]$ measurements,¹⁶ on the other hand, indicate that Δ is very large in IPA-CuBr₃, compared with IPA-CuCl₃, although the leg and rung exchange interactions are of almost equal strength because of their similar crystal structures.¹⁷ We think that all the rungs change from FM to AFM in IPA-CuBr₃. Therefore, the ground state of IPA-CuBr₃ consists of a singlet dimer state of the AFM rungs.

The mixtures of Haldane and singlet dimer state compounds, IPA-Cu(Cl_{*x*}Br_{1-*x*})₃, where the effect of bond randomness varies with *x*, were investigated by specific heat $[C(T)]$ ^{[18](#page-3-18)}, $\chi(T)$ ¹⁸, and *M*(*B*) (Refs. [7](#page-3-7) and [19](#page-3-19)) measurements. We found three magnetic phases: $0 \le x \le 0.44$ (Br-rich phase), $0.56 \le x \le 0.83$ (intermediate phase), and $0.87 \le x$ 1 (Cl-rich phase). The existence of a finite spin gap was confirmed in the Cl-rich phase, $7,18,19$ $7,18,19$ $7,18,19$ and a similar spin-gap state may exist in the Br-rich phase.¹⁸ On the other hand, gapless and ordered states corresponding to a quantum Griffith phase exist in the intermediate phase. $18-20$ $18-20$

There is a good possibility of observing the BG state at the phase boundaries, $x=0.87$ and 0.44, because at the

FIG. 1. Temperature dependence of magnetic susceptibility (χ) $\equiv M/B$ of IPA-Cu(Cl_xBr_{1-x})₃ for (a) *x*=0.87 and (b) 0.44, observed at *B*=0.1 T. $\chi(T)$ reaches its maximum at $T_{\text{max}}=23-25$ K for $x=0.87$ and $T_{\text{max}}=38-40$ K for $x=0.44$. At $T=0.5$ K, we estimate the value of $M(B)/B$ from the slope of the $M(B)$ below *B* $=8$ T. These values smoothly fit to the $\chi(T)$ curves.

boundaries, the effect of bond randomness is maximum in each spin-gap phase. In the Cl-rich phase, the BEC was found to occur above $B_{c1} \approx 10-12$ T with almost the same values of Δ , despite bond randomness.^{7[,18](#page-3-18)[,19](#page-3-19)} In this study, to clarify the bond-randomness-induced BG state, $\chi(T)$, $C(T)$, and $M(B)$ were measured, mainly in the Br-rich phase boundary, because muon spin-relaxation results for $x=0.35$ strongly suggest a transition to the BG state at $T=0$ K.²¹

The preparation of IPA-Cu(Cl_xBr_{1-x})₃ is described elsewhere[.18](#page-3-18) Here, we mention only that the *A*, *B*, and *C* planes refer to natural cleavage planes, which are close to, but do not coincide with, the corresponding crystallographic planes.¹⁴ $\chi(T)$ was measured down to $T=5$ K using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design, MPMS2). $C(T)$ was measured up to $B=12$ T over $T=0.6-40$ K using a Mag Lab^{HC} microcalorimeter (Oxford Instruments) by the relaxation method. In a previous study, $M(B)$ was measured at $T=1.7$ K (Ref. [19](#page-3-19)) and the spin-gap $M(B)$ behavior appeared for $x=0.87$, but the existence of the spin gap could not be determined for *x* $=0.15-0.44$.¹⁹ Thus, *M(B)* was measured at *T*=0.5 K. $\chi(T)$ and $M(B)$ were measured in the same sample as that used in Ref. [19.](#page-3-19)

Figure [1](#page-1-0) shows $\chi(T)$ curves for $x=0.87$ and 0.44 down to *T*=5 K. These data agree well with a previous report:¹⁸ $\chi(T)$ curves exhibit broad peaks at $T_{\text{max}}=23-25$ K for $x=0.87$ and T_{max} =38–40 K for x =0.44, and then show steep monotonic decreases and tend to zero with *T* decreasing to 0 K, which indicates that the ground state is a spin singlet state. We think that these phenomena strongly suggest a finite spin

FIG. 2. (a) Temperature dependence of specific heat $[C(T)/T]$ for $x=0.44$ and the Cl-rich phase $(x=1, 0.95, 0.92,$ and 0.87) obtained at $B=12$ T applied along the normal of the *C* plane. (b) $C(T)/T$ for $x=0.44$ obtained under various magnitudes of *B*. The ordinate is expanded from (a). The solid lines are guides for the eyes.

gap at $T=0$ K.^{[18](#page-3-18)} Figure [2](#page-1-1)(a) shows $C(T)/T$ curves at *B* $=12$ T for $x=0.44$, in addition to those for the Cl-rich phase $(x=1, 0.95, 0.92,$ and 0.87). As shown in this figure, $C(T)/T$ curves in the Cl-rich phase exhibit sharp or cusplike peaks when the BEC occurs. As shown in Fig. 6 of Ref. [18,](#page-3-18) in the Cl-rich phase, the peak positions of $C(T)/T$ shift higher on the *T* side when *B* becomes higher. On the other hand, Fig. $2(b)$ $2(b)$ shows the $C(T)/T$ curves for $x=0.44$ and these curves do not resemble those for the BEC state down to *T*=0.6 K and up to *B*=12 T. Broad and small peaks appear at *T* \approx 1 K and the peak positions depend weakly on *B*, although the lattice contribution is not subtracted from the experimental values.

Figure $3(a)$ $3(a)$ shows the *M*(*B*) curves for *x*=0.87 when *B* is applied along the normal of the *A* and *C* planes. We obtain $B_{c1} \approx 9$ T, which corresponds to Δ , and $B_{c3} \sim 35$ T, which is a transition from the BEC to BG states. This curvature is almost the same as $M(B)$ for $x=0.95$ and 0.92.⁷ As already discussed in Ref. [7,](#page-3-7) these bending curves at the high-field region strongly resemble theoretical $M(B)$ curve in the BG state shown in Fig. $3(a)$ of Ref. [22.](#page-3-22) This theoretical model is AFM dimers with slight and random changes from weak AFM intradimer interactions to strong AFM ones.²² The bond-randomness system in IPA-Cu(Cl_xBr_{1-*x*})₃ is essentially similar to this theoretical model.⁷ Figure $3(b)$ $3(b)$ shows the $M(B)$ curves for $x=0.44$ when **B** is applied along the normal of the A and C planes. As shown in the inset of Fig. $3(b)$ $3(b)$, the slope of $M(B)$ below $B=8$ T, indicated by a dashed straight line, is large. This tendency is not shown in the inset of Fig. $3(a)$ $3(a)$ for $x=0.87$. This slope strongly indicates a gapless ground state at $B=0$ T. We estimate the value of $M(B)/B$ at

FIG. 3. Magnetization (*M*) versus magnetic field (*B*) at *T* $= 0.5$ K, up to $B = 45$ T for (a) $x = 0.87$ and (b) 0.44. Each inset is the lower field portion. For $x=0.87$, the $M(B)$ curves show spin gap behavior. The first and third critical fields are $B_{c1} \approx 9$ T and B_{c3} \sim 35 T. In the inset of (b), the gray hatch corresponds to magnetic fields for which the specific-heat measurements were performed. The dashed straight line is the best-fit line below $B=8$ T and $M(B)$ deviates from this line at a field defined as $B_B \approx 8$ T.

 $T=0.5$ K, which corresponds to $\chi(T=0.5 \text{ K})$, from the slope of $M(B)$ below $B=8$ T. This yields an $M(B)/B$ of 1.07 \times 10⁻³ emu/mol for *x*=0.44, for the *B* \perp *A* and *C* planes. This value is plotted in Fig. $1(b)$ $1(b)$. The $M(B)/B$ data at *T* =0.5 K correspond well with the $\chi(T)$ curves for $x=0.44$. In the case of $x=0.87$, we estimated $M(B)/B$ to be 1.44 $\times 10^{-4}$ emu/mol; this value is 1 order of magnitude smaller than the value for $x=0.44$. This value is plotted in Fig. $1(a)$ $1(a)$, and the $M(B)/B$ data at $T=0.5$ K smoothly fit the $\chi(T)$ curves. If the value of 1.07×10^{-3} emu/mol for *x*=0.44 includes contribution from magnetic impurity ions, the $M(B)$ curves expect to show Brillouin functions at the lower *B*, but such $M(B)$ curves were not observed at all. As a result, we conclude that at *B*=0 T, χ (0) \neq 0 and a gapless ground state exists for *x*=0.44. This conclusion is opposite to our proposed model, which derived from the exponential decay of $\chi(T)$ curves. Since we neglected the residual moments of 1 $\times 10^{-3}$ emu/mol≃3×10⁻⁶ emu/g for *x*=0.44, our assumption that the ground state is in the Br-rich phase was incorrect.

As shown in the inset of Fig. $3(b)$ $3(b)$, the $M(B)$ curves begin to further increase from the best-fit line at $B \approx 8$ T which is defined as B_B . Thus we measured $C(T)$ at $B=10-12$ T (gray

FIG. 4. Magnetization (*M*) versus magnetic field (*B*) at *T* =0.5 K for the $x=0.15$ powder sample and $x=0$ single crystal. For $x=0$, the spin gap is $B > 45$ T, which agrees with the data for Ref. [19.](#page-3-19) For the $x=0.15$ powder sample, on the other hand, the $M(B)$ curve clearly shows spin-gap behavior and the spin gap is B_{c1} \sim 20 T.

hatch). If the concave curvature above $B > B_B$ indicates the BEC, sharp- or cusplike $C(T)/T$ curves are expected; however, this tendency is not shown in Fig. $2(b)$ $2(b)$. Figure $2(a)$, furthermore, shows that $C(T)/T$ for $x=0.44$ should become larger more than $0.15-0.20 \text{ J/(mol K}^2)$ because the magnetic entropy is largely spent on the BEC.²³ The *B* dependence of the peak position for $x=0.44$ is not consistent with that for the Cl-rich phase. As a result, the BEC is absent because of boson localization due to randomness although *M* begins to further increase at $B > B_B$. As discussed by Fisher *et al.*, [8](#page-3-8) these properties are consistent with the characteristics of the BG state. But the BG state is realized at *T*=0 K and $B \neq 0$ T,^{[8](#page-3-8)} and then we observed its permeation at a finite *T*. The broad and small peak of the $C(T)/T$ curve at $B=12$ T [Fig. $2(b)$ $2(b)$] resembles spin-glass behavior. But since a typical spin-glass state is weak against *B*, the $M(B)$ curvature at around B_B [the inset of Fig. [3](#page-2-0)(b)] cannot be explain by a typical spin-glass state. According to the boson picture, on the other hand, the BG state consists of quenched disorder that disrupts BEC via a mechanism similar to Anderson localization. Therefore, Fig. $2(b)$ $2(b)$ strongly suggests a BG state of spin triplets, and Fig. $3(b)$ $3(b)$ shows that a crossover from a gapless state without the BG state to a gapless state with the BG state may occur at around $B_B \approx 8$ T. We found a fieldinduced BG state of spin triplets in 1dAFM with a mixture of the Haldane and singlet dimer states. The similar $M(B)$ gapless behavior is observed for *x*=0.37. We found that a gapless ground state exists for $0.37 \le x \le 0.44$.

Figure [4](#page-2-1) shows the $M(B)$ curves at $T=0.5$ K for the *x* $=0.15$ powder sample and $x=0$ single crystal. The two curves clearly show spin-gap behavior, i.e., $B_{c1} \sim 20$ T for $x=0.15$ and B_{c1} > 45 T for $x=0$. The concave curvature of rising $M(B)$ for $x=0.15$ is similar to those for $x=0.87$ [the inset of Fig. $3(a)$ $3(a)$] despite convex curvature in an ideal 1dAFM with spin gap, i.e., the square-root dependence. 24 According to Ref. [19,](#page-3-19) the probability of the FM rungs expressed as *P* in IPA-Cu(Cl_xBr_{1-x})₃ is expressed as x^2 valid for the Cl-rich and Br-rich phases because the rungs form bibridged paths. Thus the value of $p \equiv (1 - P)$ shows magnitude of the singlet dimer state. Since we estimate B_{c1} \approx 73 T for $x=0$, ¹⁶ the value of the spin gap decreases rapidly over $0 \le x \le 0.15(0.98 \le p \le 1)$. This tendency strongly suggests that the singlet dimer state is very weak against bond randomness, contrary to the Haldane state.²⁵ Furthermore, the critical point, or crossover from gapped to gapless states, should exist for $0.15 \le x \le 0.37(0.86 \le p \le 0.98)$.

In conclusion, $\chi(T)$, $C(T)$, and $M(B)$ were measured for mixtures of Haldane and singlet dimer state compounds, IPA-Cu(Cl_xBr_{1-x})₃, for *x*=0.87 and 0.44, corresponding to the magnetic phase boundaries. For $x=0.87$, the existence of the spin gap and BEC states was confirmed, as expected. On the other hand, contrary to our proposed model, a gapless ground state was observed for $x=0.44$ at $B=0$ T. We think that the crossover from a gapless state without the BG state to a gapless state with the BG state occurs at around B_B \approx 8 T. From the viewpoints of Anderson localization, dimensionality is very important. In $Tl_{1-x}K_xCuCl_3$, a gapless state is realized even for $x=0.05$.¹³ As already pointed out by Shindo and Tanaka, 13 the effects of reduction in the spin gap did not make a distinction between three-dimensional exchange interactions and randomness. On the other hand, IPA-Cu(Cl_xBr_{1-x})₃ are suitable for studying the BG state because of good one dimensionality and existence of the gapped state $(0 < x \le 0.15)$. Furthermore, the intermediate phase only appears in IPA-Cu(Cl_xBr_{1-x})₃ for $0.56 \le x$ \leq 0.83. In the future, we will investigate the intermediate phase in more detail. Another interesting question remains: why there is a large difference between $T_N \leq 2$ K at *B* =12 T in the Cl-rich phase and T_N =12–17 K at *B*=0 T in the intermediate phase.¹⁸

This research was supported in part by a Grant-in-Aid for Young Scientists (B) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

*manaka@eee.kagoshima-u.ac.jp

- ¹F. D. M. Haldane, Phys. Rev. Lett. **50**, 1153 (1983).
- ²T. Giamarchi and A. M. Tsvelik, Phys. Rev. B **59**, 11398 (1999); T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka, Phys. Rev. Lett. **84**, 5868 (2000); S. Wessel and S. Haas, Phys. Rev. B 62, 316 (2000); T. M. Rice, Science 298, 760 (2002).
- 3T. Giamarchi, C. Rüegg, and O. Tchernyshyov, Nat. Phys. **4**, 198 (2008).
- 4A. Oosawa, M. Ishii, and H. Tanaka, J. Phys.: Condens. Matter 11, 265 (1999).
- ⁵M. Jaime *et al.*, Phys. Rev. Lett. **93**, 087203 (2004); S. E. Sebastian et al., Nature (London) 441, 617 (2006).
- ⁶M. Greiner *et al.*, Nature (London) **415**, 39 (2002); I. Bloch, Nat. Phys. **1**, 23 (2005).
- 7H. Manaka, A. V. Kolomiets, and T. Goto, Phys. Rev. Lett. **101**, 077204 (2008).
- 8M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989).
- ⁹D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. **66**, 261 (1994); S. Fujimoto and N. Kawakami, Phys. Rev. B **54**, R11018 (1996); V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997).
- 10D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. **68**, 2398 (1992); Phys. Rev. B 48, 13060 (1993); L. Ammor, N. H. Hong, B. Pignon, and A. Ruyter, *ibid.* **70**, 224509 (2004).
- 11K. Yamamoto, Y. Shibayama, and K. Shirahama, J. Phys. Soc.
- Jpn. 77, 013601 (2008).
- ¹² A. Oosawa and H. Tanaka, Phys. Rev. B **65**, 184437 (2002).
- ¹³ Y. Shindo and H. Tanaka, J. Phys. Soc. Jpn. **73**, 2642 (2004).
- 14H. Manaka, I. Yamada, and K. Yamaguchi, J. Phys. Soc. Jpn. **66**, 564 (1997).
- 15T. Masuda, A. Zheludev, H. Manaka, L. P. Regnault, J. H. Chung, and Y. Qiu, Phys. Rev. Lett. **96**, 047210 (2006).
- ¹⁶H. Manaka and I. Yamada, J. Phys. Soc. Jpn. **66**, 1908 (1997).
- 17S. A. Roberts, D. R. Bloomquist, R. D. Willett, and H. W. Dodgen, J. Am. Chem. Soc. 103, 2603 (1981); D. R. Bloomquist and R. D. Willett, *ibid.* **103**, 2615 (1981).
- 18H. Manaka, I. Yamada, and H. Aruga Katori, Phys. Rev. B **63**, 104408 (2001).
- 19H. Manaka, I. Yamada, H. Mitamura, and T. Goto, Phys. Rev. B 66, 064402 (2002).
- ²⁰ T. Nakamura, J. Phys. Soc. Jpn. **72**, 789 (2003); Phys. Rev. B **71**, 144401 (2005).
- 21T. Goto, T. Suzuki, K. Kanada, T. Saito, A. Oosawa, I. Watanabe, and H. Manaka, Phys. Rev. B **78**, 054422 (2008).
- 22O. Nohadani, S. Wessel, and S. Haas, Phys. Rev. Lett. **95**, 227201 (2005).
- ²³ H. Manaka *et al.*, J. Phys. Soc. Jpn. **67**, 3913 (1998).
- ²⁴ M. Takahashi and T. Sakai, J. Phys. Soc. Jpn. 60, 760 (1991); I. Affleck, Phys. Rev. B 43, 3215 (1991); K. Hida, J. Phys. Soc. Jpn. 67, 1416 (1998).
- ²⁵ K. Hida, Phys. Rev. Lett. **83**, 3297 (1999).